Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37505461

RESUMO

MOTIVATION: Cell membrane segmentation in electron microscopy (EM) images is a crucial step in EM image processing. However, while popular approaches have achieved performance comparable to that of humans on low-resolution EM datasets, they have shown limited success when applied to high-resolution EM datasets. The human visual system, on the other hand, displays consistently excellent performance on both low and high resolutions. To better understand this limitation, we conducted eye movement and perceptual consistency experiments. Our data showed that human observers are more sensitive to the structure of the membrane while tolerating misalignment, contrary to commonly used evaluation criteria. Additionally, our results indicated that the human visual system processes images in both global-local and coarse-to-fine manners. RESULTS: Based on these observations, we propose a computational framework for membrane segmentation that incorporates these characteristics of human perception. This framework includes a novel evaluation metric, the perceptual Hausdorff distance (PHD), and an end-to-end network called the PHD-guided segmentation network (PS-Net) that is trained using adaptively tuned PHD loss functions and a multiscale architecture. Our subjective experiments showed that the PHD metric is more consistent with human perception than other criteria, and our proposed PS-Net outperformed state-of-the-art methods on both low- and high-resolution EM image datasets as well as other natural image datasets. AVAILABILITY AND IMPLEMENTATION: The code and dataset can be found at https://github.com/EmmaSRH/PS-Net.


Assuntos
Processamento de Imagem Assistida por Computador , Percepção , Humanos , Membrana Celular , Microscopia Eletrônica
2.
Front Comput Neurosci ; 16: 842760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480847

RESUMO

Connectomics is a developing field aiming at reconstructing the connection of the neural system at the nanometer scale. Computer vision technology, especially deep learning methods used in image processing, has promoted connectomic data analysis to a new era. However, the performance of the state-of-the-art (SOTA) methods still falls behind the demand of scientific research. Inspired by the success of ImageNet, we present an annotated ultra-high resolution image segmentation dataset for cell membrane (U-RISC), which is the largest cell membrane-annotated electron microscopy (EM) dataset with a resolution of 2.18 nm/pixel. Multiple iterative annotations ensured the quality of the dataset. Through an open competition, we reveal that the performance of current deep learning methods still has a considerable gap from the human level, different from ISBI 2012, on which the performance of deep learning is closer to the human level. To explore the causes of this discrepancy, we analyze the neural networks with a visualization method, which is an attribution analysis. We find that the U-RISC requires a larger area around a pixel to predict whether the pixel belongs to the cell membrane or not. Finally, we integrate the currently available methods to provide a new benchmark (0.67, 10% higher than the leader of the competition, 0.61) for cell membrane segmentation on the U-RISC and propose some suggestions in developing deep learning algorithms. The U-RISC dataset and the deep learning codes used in this study are publicly available.

3.
Med Image Anal ; 70: 101920, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33676097

RESUMO

Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions. While numerous methods for detecting, segmenting and tracking of medical instruments based on endoscopic video images have been proposed in the literature, key limitations remain to be addressed: Firstly, robustness, that is, the reliable performance of state-of-the-art methods when run on challenging images (e.g. in the presence of blood, smoke or motion artifacts). Secondly, generalization; algorithms trained for a specific intervention in a specific hospital should generalize to other interventions or institutions. In an effort to promote solutions for these limitations, we organized the Robust Medical Instrument Segmentation (ROBUST-MIS) challenge as an international benchmarking competition with a specific focus on the robustness and generalization capabilities of algorithms. For the first time in the field of endoscopic image processing, our challenge included a task on binary segmentation and also addressed multi-instance detection and segmentation. The challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures from three different types of surgery. The validation of the competing methods for the three tasks (binary segmentation, multi-instance detection and multi-instance segmentation) was performed in three different stages with an increasing domain gap between the training and the test data. The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap. While the average detection and segmentation quality of the best-performing algorithms is high, future research should concentrate on detection and segmentation of small, crossing, moving and transparent instrument(s) (parts).


Assuntos
Processamento de Imagem Assistida por Computador , Laparoscopia , Algoritmos , Artefatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...